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• Introduction:
- Descriptions of 1D & 2D MHD problems.
- Motivation of the scheme.
- Difficulties in efficient numerical solution to ensure solenoidal

magnetic fields.
• Mathematical and numerical Implementations:

- Governing equations in a conservative form.
- Staggered mesh algorithm.
- Riemann problem.

- Roe-Type scheme, FOG & HOG, TVD.
- Dimensional splittings.

• Code structure and computation.
• Results & discussion.

- Methodology, validation and analysis of results.
• References.

Outline of Presentation
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1D problem

• Brio-Wu’s 1.5D ideal MHD problem.

• All variables are functions of      only.

• Vector quantities with perpendicular
direction.

•       is constant.

•                is trivial.

• Nonlinear, 5-component PDE, 5
conserved variables.

• 5 wave Riemann problem.

• e.g., Fast rarefaction wave, slow
compound wave
(shock+rarefaction), contact
discontinuity, slow shock, fast
rarefaction wave.

1D & 2D MHD problems

2D problem

• Orszag-Tang’s MHD vortex problem.

• One more variable in     direction.

• Vector quantities with normal and
tangential directions for each
sweeps.

•       is not a constant.

•                is a new restriction!

•  7 wave Riemann problem.

• e.g., Fast rarefaction wave, Alfven
wave, slow rarefaction wave, contact
discontinuity, slow shock, Alfven
wave, fast shock wave.

• More complicated wave structures
with a numerical restriction.
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Numerical MHD

•  Three approaches for ensuring                 with high order Godunov
types solver: 

- 8-wave, projection scheme, & CT / CD.

•  8-wave (Powell et al., 1999)

- can spoil conservation (incorrect jump conditions across discont.)

- keeps                to the accuracy of truncation error, i.e., requires
zero divergence to be satisfied to the 2nd order accuracy in IC &
BC.

• Projection scheme (Brackbill and Barnes, 1980, Crockett et al., 2003)

- keeps                to the accuracy of the Poisson solver.

- accurate but expensive.

• CT scheme using staggered algorithm (Evans and Hawley, 1988,
Balsara and Spicer, 1999)

- maintains                to the accuracy of machine round off errors.

- same order of accuracy as the projection scheme.

• Extensive tests and comparisons are made by Toth [3].
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• The ideal MHD governing equations in 2D :

Conservation Form of Ideal MHD Equations (2D)
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Staggered Mesh Algorithm

• 2D staggered grid topology to
ensure                .

•  Upwinded fluxes       collocated
at centers of cell interfaces.

•                      at cell corners.

•  Algorithm:

- IC & BC for

-      from high order Godunov

- Update      using

- Update     using Maxwell’s
3rd eqn:

- Update      by interpolating
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Staggered Mesh Algorithm – cont’d

• Using the staggered mesh algorithm, one can maintain the discretized numerical
divergence of magnetic fields remain zero!

• Important constraint in MHD problems whose dimensionality > 1.

•                  can be generated even with solenoidal IC & BC, due to inherent non-
linearities of many shock-capturing numerical methods.

• If not controlled then the build-up of non-zero magnetic fields will yield numerical
instability without any physical meanings.
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Riemann Solver for Nonlinear MHD

• Required for Godunov type methods.

• Approximate Riemann solvers are faster and efficient.

- Roe-type upwind differencing scheme.

- Roe’s linearization procedure.

- Construction of a Roe matrix,      .

- Analytical form is available at           (Brio & Wu [5]).

- Simple arithmetic averaging for          .

- Use eigensystem of a Roe matrix to compute numerical fluxes at

cell interface centers.
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Roe’s Linearization

• Hyperbolicity: (may not be strictly hyperbolic)

-      is required to have real eigenvalues and linearly

independent right eigenvectors.

• Consistency with exact Jacobian:

• Conservation across discontinuities:
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Eigenstructure of MHD equation

• 7 wave speeds & 8 states.

• Slow / fast signals: might be shocks or rarefactions.

• Entropy wave: contact discontinuity.

• Eigenvalues         (wave speeds) may not be distinct.

• Right eigenvectors         (path taken in the phase space).

• Left eigenvectors           (charcteristic).
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Intercell Fluxes of the Riemann Problem
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First order Godunov method (FOG)

1−i 1+ii

n
iu

n
iu 1+

n
iu 1−

• Piecewise constantly distributed data at time level n.

• Solves Riemann problems at each intercell boundaries                     .
2

1
  &   

2

1 +− ii



13

MUSCL-Hancock Method
- High order Godunov method (HOG)
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• Time evolution:

• Riemann problem with piecewise constant data:
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Dimensional splitting scheme in 2D
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Dimensional splitting scheme in 2D-cont’d
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MHD Code at a glance
• Solves 1D and 2D MHD problems in the Cartesian grids.

• Written in Fortran 90 , started from scratch.

• 14 sub-modules with a driver (mhd.f90) routine, one runtime parameter file  (mhd.init).

• One can choose from:

• Outflow & periodic BC.

• 1st and 2nd order (MUSCL-Hancock) Godunov methods.

• w/ or w/o TVD, w/ or w/o entropy fix, two different averaging schemes.

• Two different eigenstructures (Roe-Balsara & Ryu-Jones).

• Control of a parameter       for different slope limiter functions (e.g., MINMOD,
SUPERBEE).

•  1st and 2nd order dimensional splitting schemes.

• 3 different solution levels for 1D and 4 different levels for 2D.

• Restart capability.

• Compile flags:

• pgf90 –tpp7 –O2 in usual runs

• pgf90 –g in debug mode

β
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1D Brio-Wu problem - Verification study
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1D Brio-Wu problem – Grid resolution test
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1D Brio-Wu problem – Sol’n level test (N=200)
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2D Orszag-Tang problem - Verification study
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2D Orszag-Tang problem - Verification study

• Well validated results.

• Divergence free of magnetic fields are obtained using the staggered mesh algorithm, while
nonzero values are evident in the FLASH results (8-wave scheme).
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2D Orszag-Tang problem
– Sol’n level test (200x200)
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CPU Comparisons

687 sec356 sec200 x 200

3,192 sec5,512 sec400 x 400

76 sec49 sec100 x 100

12 sec6 sec50 x 50

FLASH codeMHD codeGrids

• Average values of CPU time on a linux workstation of Pentium 4 2.4 GHz (2GB memory).
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2D Orszag-Tang problem – movie

• Density movie on 400x400 high resolution.

• CFL=0.8.

• 2nd order Godunov MUSCL-Hancock scheme.

• 2nd order accurate dimensional splitting in alternating order.

• Enjoy!

http://www.lcv.umd.edu/~dongwook/HTML/amsc663.htm
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Conclusion & Future works

• Successful implementations of 1D and 2D MHD solver.

• Codes are well validated for well known bench marked problems, such as 1D Brio-Wu
MHD shock tube problem and 2D Orszag-Tang MHD vortex problem.

• Compares well with the FLASH results.

• Performed systematic studies in data analysis.

•  Keeps divergence of magnetic fields remain zero up to machine round-off errors
throughout calculations, even for long period of time.

• Pure hydrodynamic problem can be considered as a limiting case.

• Implement other scheme (Crockett, Colella, et al., 2003) :

• Unsplit scheme for accuracy

• Projection method / Poisson solver

• 3D MHD turbulence problem:

• Parallelization

• AMR



26

1. Balsara, D. S., Spicer, D. S., ``A Staggered Mesh Algorithm Using High Order Godunov Fluxes to
Ensure Solenoidal Magnetic Fields in Magnetohydrodynamic Simulation",  J. Comp. Phys.,
149(1999), pp.~270-292.

2. Balsara, D. S., ``Divergence-Free Adaptive Mesh Refinement for Magnetohydrodynamics", J. Comp.
Phys.,  174(2001),  pp.~614-648.

3. Toth, G., ``The                  Constraint in Shock-Capturing Magnetohydrodynamics Codes", J. Comp.
Phys., 161(2000),  pp.~605-656.

4. Toth, G., ``Computational Magnetohydrodynamics : Notes For An Introductory Level Course",
http://hermes.elte.hu/~gtoth , June, 1998.

5. Brio, M., Wu, C. C., ``An Upwind Differencing Scheme for the Equations of Ideal
Magnetohydrodynamics",   J. Comp. Phys., 75(1988), pp.~400-422.

6. Orszag, A., Tang, C. M., ``Small-scale Structure of Two-Dimensional Magnetohydrodynamic
Turbulence",  J. Fluid Mech.,  90,  129(1979).

7. FLASH, version 2.3,  http://flash.uchicago.edu  , June, 2003.

8. Stanchev,  G., Zalesak, S., Deane, A., ``VizFlow", NASA Contractor Report CR-2003-212232 (2003),
http://lcv.umd.edu/deane/

0=•∇ B

References



27

9. Powell et al.,, ``A solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics",  J. Comp.
Phys., 154(1999), pp.~284-309.

10. Roe, P. L., Balsara, D. S., ``Notes on the Eigensystem of Magnetohydrodynamics",SIAM, J. Appl.
Math.,  56(1996),  pp.~57-67.

11. Balsara, D. S., ``Linearized Formulation of the Riemann Problem for Adiabatic and Isothermal
Magnetohydrodynamics", The Astro. Physical Journal Supplement Series, 116(1998),  pp.~119-
131.

12. Balsara, D. S., ``Total Variation Diminishing Scheme for Adiabatic and Isothermal
Magnetohydrodynamics", The Astro. Physical Journal Supplement Series, 116(1998),  pp.~133-
153.

0=•∇ B

References – cont’d


